Convolution and Fractional Integration with Measures on Homogeneous Curves in ${\mathbb R}^n$
نویسندگان
چکیده
منابع مشابه
On the two-wavelet localization operators on homogeneous spaces with relatively invariant measures
In the present paper, we introduce the two-wavelet localization operator for the square integrable representation of a homogeneous space with respect to a relatively invariant measure. We show that it is a bounded linear operator. We investigate some properties of the two-wavelet localization operator and show that it is a compact operator and is contained in a...
متن کاملUniform measures and convolution on topological groups
Uniform measures are the functionals on the space of bounded uniformly continuous functions that are continuous on every bounded uniformly equicontinuous set. This paper describes the role of uniform measures in the study of convolution on an arbitrary topological group.
متن کاملPreferred Parameterisations on Homogeneous Curves
This article is motivated by the theory of distinguished curves in parabolic geometries, as developed in [2]. A parabolic geometry is, by definition, modelled on a homogeneous space of the form G/P where G is a real semisimple Lie group and P is a parabolic subgroup. (There is also a complex theory which corresponds to the choices of complex G’s and P ’s with specific curvature restrictions for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Research Letters
سال: 2004
ISSN: 1073-2780,1945-001X
DOI: 10.4310/mrl.2004.v11.n6.a11